When To Use H.264 vs. HEVC For Video Compression

Richard Deeble recently asked:

I have a 2017 Retina iMac, running Mojave and have a question relating to H.264 and HEVC.

I created a 4K 30 fps project, 4:12 in duration, using Rec. 709 color space. When I use Compressor to compress the video:

I can’t see any obvious advantage of using HEVC. Can you advise me?

Larry replies: These are great questions, but the answer is complex. Let’s start with the easiest: compressed file size.

FILE SIZE

In general, file SIZE is almost totally determined by bit rate. So, two files with the same bit rate will be pretty much the same size, as Richard reported. However, while those files will be the roughly the same size, they won’t necessarily have the same image quality.

Because image QUALITY is based upon five factors:

For this reason, you can’t compare compressed files solely on final file size.

COMPRESSING 4K

This screen shot illustrates that Apple Compressor can create H.264 files for social media up to 4K in size.

NOTE: UHD is 3840 x 2160 pixels. “True 4K” is 4096 by up to 2304 pixels; though more generally 2160.

And this screen shows social media compression settings in Adobe Media Encoder.

Both these popular apps can compress 4K images using the H.264 codec.

So, why use HEVC?

HEVC CREATION STORY

HEVC was created to solve a problem with cellular networks – they were drowning in video. Cellular was first invented to carry voice (audio) and, a bit later, text. Both these files, when compared to video, are small.

However, as phones got smarter and video became more pervasive, we started watching more video. Not just on our TV sets or computers, but on mobile phones and iPads. This put a tremendous burden on the cell networks, which weren’t designed for this level of data traffic.

HEVC (originally called H.265) was invented to help solve this problem. HEVC was designed so that a file with 30% lower bit rate would display the same image quality as an H.264 file at the higher bit rate. This means that if everyone sending files over cell networks used HEVC for all their movies, the cell networks would have 30% more bandwidth available to support more users or more data traffic.

My research has shown this to be a reasonably true statement: a video created using HEVC at a lower bit rate has the same image quality as an H.264 video at a higher bit rate.

The problem is that, for most of us, this isn’t relevant.

Why? Because we are not supplying media directly to cell networks. Instead, we are uploading files to YouTube or Facebook or Vimeo or Twitter. Behind the scenes these social media giants are automatically converting the file we send them into a variety of different codecs and formats for all the different ways we view video today.

NOTE: A couple of years ago, I counted the number of codecs that YouTube converted our videos into. It came to 20 different formats for each video! This is what’s happening when YouTube displays its “Processing” dialog after you upload a file.

WHY DOES IT TAKE SO LONG TO COMPRESS HEVC VIDEO?

HEVC is a highly-compressed format. This means that the math involved is very complex and takes a long time to calculate. It uses “asymmetrical compression,” meaning it takes a long time to compress so that playback can be viewed in real-time.

To speed this compression process, modern CPUs support hardware acceleration for both H.264 and HEVC video formats. What this means is that compression is done in hardware, which is about ten times faster than software.

But, HEVC is such a new format that older systems don’t support hardware acceleration simply because HEVC wasn’t invented when those chips were created. Still, even with hardware acceleration, HEVC compression for both Compressor and AME takes anywhere from 10-40% longer than H.264, depending upon the source codec and compression settings.

NOTE: Here’s a detailed article comparing compression speeds for H.264 and HEVC using Apple Compressor and Adobe Media Encoder.

WHAT SHOULD WE DO?

If you are sending files to social media, use H.264 at a high bit-rate – say 15 Mbps. Since your files will be recompressed once the upload is complete, there’s no reason to waste time compressing HEVC and the higher bit rate gives the social media platform extra data to work with during compression.

If you are sending files that will be delivered directly to viewers over the Internet and they are not on cellular devices, H.264 is also fine, because when computers access the web, they are not using cell networks in most cases.

You only need to create HEVC files when the files you create will be viewed directly on cellular devices, without first going through a social media site. And, unless you are running your own website, that situation will be rare.

The principle benefit to media creators in using HEVC is to save upload time by sending smaller files. However, the time we save uploading is more than likely offset by taking longer to compress the media files in the first place.

SUMMARY

HEVC is essential for final distribution of media files over cell networks. It reduces data traffic while maintaining image quality. All modern browsers support HEVC.

However, for media creators uploading files to social media, there’s no big benefit to using HEVC. Yes, the uploaded file is smaller, but the additional compression time may not be worth the trade off.

Files created for broadcast, cable, digital cinema or OTT services use codecs other than H.264 or HEVC, so for media creators producing files for these distribution outlets, the question of HEVC is not relevant.

As always, share your thoughts in the comments.


Bookmark the permalink.

4 Responses to When To Use H.264 vs. HEVC For Video Compression

  1. My feeling is that HEVC has far more accurate color rendition. H264 generally leaves me wanting when I look at the result versus the original file. Not so with HEVC

  2. Clayton Moore says:

    More work then H264 to compress or encode but less work then H264 to decode and playback.

    Having said that, my Panasonic GH5 has a 4k HEVC record setting built right into the camera meant to create Hybrid Log-Gamma. It requires the camera to be re-started to use it …. but WOW highlight roll-offs and general dynamic range are smoooth and …. man it makes pretty files. I apply a LUT for that in FCP (using an OLD) mac and I have a 709 compliant file with NO rendering needed.

    • Clayton Moore says:

      oh yea I forgot to Larry’s point bandwidth wise, it does that (at 24fps in this case) at only just under 64 Mbit/s

Leave a Reply

Your email address will not be published. Required fields are marked *

Larry Recommends

Final Cut Pro X 10.4

FCPX Complete

Edit smarter with Larry’s brand-new webinars, all available in our store.

Access over 1,900 on-demand video editing courses. Become a member of our Video Training Library today!

JOIN NOW

Subscribe to Larry's FREE weekly newsletter and save 10%
on your first purchase.